Oxford Cambridge and RSA
An OCR endorsed textbook

GCSE (9-1)

 Computer

 Computer Science

 Science}OCR J 277

SRobson and
PM Heathcote

Contents

Paper 1 - Computer systems

Section 1
Systems architecture, memory and storage 1
Section 1.1 Architecture of the CPU 2
1.2 CPU performance 5
1.3 Memory 8
1.4 Secondary storage 10
Section 2
Data representation 16
Section 2.1 Units of data storage and binary numbers 17
2.2 Binary arithmetic and hexadecimal 20
2.3 Characters 24
2.4 Images 25
2.5 Sound 28
2.6 Compression 29
Section 3
Computer networks, connections and protocols 34
Section 3.1 The Internet and wide area networks 35
3.2 Local area networks 38
3.3 Wireless networking 43
3.4 Client-server and peer-to-peer networks 45
3.5 Standards, protocols and layers 48
Section 4
Network security and systems software 53
Section 4.1 Network threats 54
4.2 Identifying and preventing vulnerabilities 58
4.3 Operating systems 61
4.4 Utility software 64
Section 5
Ethical, legal, cultural and environmental impacts of digital technology 67
Section 5.1 Computer systems in the modern world 68
5.2 Ethical, cultural and environmental issues 72
5.3 Legislation and privacy 76
Paper 2 - Computational thinking, algorithms and programming
Section 6
Algorithms 81
Section 6.1 Computational thinking 82
6.2 Searching algorithms 85
6.3 Sorting algorithms 87
6.4 Developing algorithms using flowcharts 92
6.5 Developing algorithms using pseudocode 94
6.6 Interpret, correct or complete algorithms 98
Section 7
Programming 105
Section 7.1 Programming fundamentals 106
7.2 Sequence and selection 111
7.3 Iteration 114
7.4 Arrays 117
7.5 Procedures and functions 120
7.6 Records and files 124
Section 8
Logic and languages 131
Section 8.1 Logic diagrams and truth tables 132
8.2 Defensive design 135
8.3 Errors and testing 138
8.4 Translators and facilities of languages 144
8.5 The Integrated Development Environment 146

Paper 1 - Computer systems Section 1

Systems architecture, memory and storage

1.1 Architecture of the CPU 2
1.2 CPU performance 5
1.3 Memory 8
1.4 Secondary storage 10

Objectives

- Describe the architecture of the CPU
- Explain the purpose of the CPU as fetching and executing instructions stored in memory
- Describe what actions occur at each stage of the fetch-execute cycle
- Describe common CPU components and their function: ALU (Arithmetic Logic Unit), CU (Control Unit), cache, registers
- Explain the role and operation of the following CPU registers used in Von Neumann architecture: MAR (Memory Address Register), MDR (Memory Data Register), Program Counter, Accumulator
- Describe how common characteristics of CPUs affect their performance: clock speed, cache size, number of cores
- Explain the purpose and give typical characteristics and examples of embedded systems
- Explain the need for primary storage
- Describe the key characteristics and purpose of RAM and ROM
- Explain the need for virtual memory
- Describe the need for secondary storage including optical, magnetic and solid state storage
- Compare advantages and disadvantages between each type of storage device/medium
- Discuss data capacity of storage devices and calculate data capacity requirements
- Select suitable storage devices and storage media for a given application and the advantages and disadvantages of these, using characteristics: capacity, speed, portability, durability, reliability, cost

1.1 - Architecture of the CPU

Basic computer system model

A computer system is made up of hardware and software. Hardware is any physical component that makes up a computer. Software is any program that runs on a computer.

Computer systems are all around us. They are not just the PCs on a desk but include mobile phones, cash machines, supermarket tills and the engine management systems in a modern-day car.

The diagram below shows the basic model of a computer system.

All computer systems must have a central processing unit (CPU), also called simply the processor, and at least one input device that gets data from the real world. This could be a mouse and keyboard on a conventional PC, a temperature sensor (thermistor) in a commercial greenhouse or the microphone on a mobile phone.

Input devices take real world data and convert it into a form that can be stored on the computer. The input from these devices is processed and the computer system will generate outputs. The output device could be, for example, a conventional computer screen, an actuator that opens or closes a greenhouse window, or the speaker that produces sound on a phone.

The computer must have memory (primary storage), used for holding instructions currently being executed and data that is being used.

Any computer system will have these four basic components.
The fifth component is secondary storage. The computer system may need to use stored data to perform the processing and, as a result of processing input, may generate data that is then stored. Storage devices such as hard disks can hold large amounts of data including databases, text documents, programs, music files and photographs.

2.2 - Binary arithmetic and hexadecimal

Addition of binary numbers

Adding binary works in exactly the same way as adding denary numbers except this time you carry groups of 2 instead of groups of 10:

Some more examples:

$$
\begin{array}{lll}
10101100 \\
00010001+ \\
\hline 10111101
\end{array} \begin{aligned}
& 00101101 \\
& \frac{10000101+}{10110010}
\end{aligned} \begin{aligned}
& 00101101 \\
& \frac{10000111+}{10110100}
\end{aligned}
$$

Carry out the following binary number additions:
(a) $00110011+01000110$
(b) $00010110+01110110$
(c) $00001111+01110011$
(d) $00101010+01111011$
(e) $00011100+01110011$

Overflow

The biggest number you can represent with 8 bits is 255 (i.e. $128+64+32+16+8+4+2+1$).
If you add two binary numbers together that result in a number bigger than 255 , it will need 9 or more bits. A computer stores things in memory in a finite amount of space. If you cannot represent the number in that amount of space because it is too big, then overflow occurs.

For example:
(252) 11111100
(15) $00001111+$
(267) 100001011

The computer would need 9 bits to represent 267 so this 9th bit doesn't fit in the byte allocated. This is what is meant by an overflow error.

Lossy compression

Lossy compression is a data encoding method where files are compressed by removing some of the detail. For example, photographs can be stored using fewer colours so fewer bits are needed per pixel. This type of compression is used to compress images, audio files and video files, where it is easy to recognise an image or sound clip even if some data is missing.

A bitmap image (.bmp) is an uncompressed version of an image. If you save the same photograph as a JPEG file then it is still a high quality image with a colour depth of 24 bits but some of the data is lost where it is unlikely to be noticed.

Reduction of file size can also be achieved by reducing the colour depth from 24-bit colour, to 8 -bit colour, for example. The human eye can tell the difference at this stage. You will see solid blocks of colour instead of gradual transitions in the photograph.

Here is a section of a photograph enlarged so you can see the difference:

24-bit colour

8-bit colour

Lossy compression formats are show below:

Type	File suffix	Compression Type	Explanation
JPEG	.jpg	Lossy	Good for photographs. Colour depth $=24$ bits, RGB, 16.7 million different colours
Windows Media Player	.wmv	Lossy	Uses Windows Media compression
MP3	.mp3	Lossy	Audio files: Designed for downloading music from the Internet. In MP3 format you could fit 120 songs on a CD.
MPEG-1	.mpg	Lossy	Video files: Suitable for small low- resolution sequences on CD
MPEG-2	.$m p 2$	Lossy	Video files: Suitable for full-screen, high resolution video on DVD

1. (a) Add the following two 8-bit binary numbers.

$$
\begin{array}{llllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}
$$

(b) An overflow error can occur when adding two 8-bit binary numbers.

Describe what is meant by an overflow error.
2. The number 73 could be a denary number or a hex number.
(a) If 73 is a hex number, calculate its value as a denary number.

You must show your working.
(b) If 73 is a denary number, calculate its value as a hex number.

You must show your working.
3. Numbers can be represented in denary, binary or hexadecimal.
(a) (i) Convert the binary number 01101001 to denary, showing your working.
(ii) Convert the number 154 to binary.
(b) The security code for an alarm system is a long binary number which begins

$$
10001111100101111011 \text {... }
$$

The technicians prefer to use hexadecimal to enter the security code.
(i) When the number is converted into hexadecimal, the first two digits are 8F as shown below.

Complete the gaps to show the next three digits.

| Binary | 1000 | 1111 | 1001 | 0111 | 1011 |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| Hexadecimal | 8 | F | $\ldots \ldots \ldots$. | $\ldots \ldots .$. | $\ldots \ldots .$. |

(ii) Explain why the technicians prefer to use hexadecimal.

OCR A451 June 2013 Qu 5
4. (a) Explain why data is stored in computers in a binary format.
(b) In the ASCII character set, the character codes for the first three capital letters are given below.

Letter	ASCII character code
A	01000001
B	01000010
C	01000011

(i) State how the ASCII character set is used to represent text in a computer.
(ii) Convert the word CAB into binary using the ASCII character set.
(iii) Explain why the ASCII character set is not suitable for representing text in all the languages of the world.

Encryption

Encryption is used primarily to protect data in case it has been hacked or accessed illegally. Data that is being transmitted over the Internet is vulnerable to hackers. For example, someone who uses an online shopping site will have to type in their payment details, such as a credit or debit card number, and it is essential that this information is kept secure. If they are paying by PayPal, they will have to type in their email address and password, which needs to be kept safe from anyone intercepting the transmission.

Whilst encryption won't prevent hacking, it makes the data incomprehensible unless the recipient has the necessary decryption tools.

Encryption terminology

- Plaintext: the original message to be encrypted
- Ciphertext: the encrypted message
- Encryption: the process of converting plaintext into ciphertext
- Key: a sequence of letters, numbers and other characters used to encrypt or decrypt
- Encryption algorithm: the method for encrypting the plaintext

Symmetric encryption

Symmetric encryption uses a secret key which can be a combination of letters, numbers and other characters. A single key is used to encrypt and decrypt a message and must be given to the recipient of your message so that they can decrypt and read it.

A very simple example of symmetric encryption is the Caesar shift cipher, in which each letter is replaced by a letter n number of positions further on in the alphabet. The key in this case is 3 :

5.1 - Computer systems in the modern world

Computer technology impacts just about everything we do. Here are a few areas to consider.

Communication

We can keep in touch with friends and family all over the world through email, texting, phone calls and social networking sites. The latest news about world events can be spread instantly. We can find out whether a train is on time, what's on at the cinema, or exactly where a friend is at this moment, using our smartphones.

Can you imagine having to wait months for news of a family member who has emigrated to another country?

Employment

Computer technology has had a huge impact on employment. Many types of work have disappeared, and new jobs have been created.

Computer technology has already led to the loss of thousands of different jobs, for example in:

- clerical work
- manufacturing
- journalism

Robots could soon surpass humans in routine legal work, language translation and medical diagnosis - but plumbers, gardeners and physiotherapists will be hard to replace.

Thousands of new jobs have been created as a result of computer technology:

- software and hardware development
- creation of a multitude of new products from robots, 'smart homes’ and mobile technologies to online learning materials and aids for disabled people

Name three jobs that you think could be computerised, and five jobs that cannot easily be computerised.

Shopping

Online shopping has given customers access to many different products that were traditionally difficult to purchase, as well as day to day items. This easy access has, in many towns, contributed to the closing of local and national stores leading to empty shops on the high street.

Example 4: Insertion sort

The same list of numbers is sorted into ascending order using an insertion sort:

9, 5, 4, 15, 3, 8, 11, 2									
We leave the first item at the start of the list		9	5	4	15	3	8	11	2
5 is now inserted into the sorted list	$1^{\text {st }}$ pass	5	9	4	15	3	8	11	2
4 is now inserted into the sorted list	$2^{\text {nd }}$ pass	4	5	9	15	3	8	11	2
15 is now inserted into the sorted list (it stays where it is)	$3^{\text {rd }}$ pass	4	5	9	15	3	8	11	2
3 is now inserted into the sorted list	$4^{\text {th }}$ pass	3	4	5	9	15	8	11	2
8 is now inserted into the sorted list	$5^{\text {th }}$ pass	3	4	5	8	9	15	11	2
11 is now inserted into the sorted list	$6^{\text {th }}$ pass	3	4	5	8	9	11	15	2
2 is now inserted into the sorted list	$7^{\text {th }}$ pass	2	3	4	5	8	9	11	15

On each pass, the current data item is checked against those already in the sorted list (as shaded in the diagram). If the data item being compared in the sorted list is larger than the current data item, it is shifted to the right. This continues until we reach a data item in the sorted list which is smaller than the current data item.

For example, at the 5 th pass 8 is compared with 15 , and since 8 is smaller, 15 is shifted right.
8 is compared with 9 , and 9 is shifted right.
8 is compared with 5 , and as 8 is larger, it is inserted into the free space.

5th pass in summary:

8 is removed from the list temporarily

3	4	5	9	15		11	2

Since $15>8$, it is now shifted to the right

Since $9>8$, it is now shifted to the right

Since $5<8$, 8 is now inserted into the sorted list

The following list of names is to be sorted into alphabetical sequence using an insertion sort. George, Jane, Miranda, Ahmed, Sophie, Bernie, Keith.
(a) What is the first name to be moved? What will the list look like after this name is moved?
(b) What is the second name to be moved? What will the list look like after this name has been moved?
(c) How many names have to be moved altogether before the list is sorted?

Example 8

A computerised form prompts a user to enter their email address.
The validation rules check if the address has an @ symbol in it. If it doesn't, an error message is displayed, the text box is cleared and the system asks the user to enter the email address again. This continues until an appropriate address is entered.
The system then checks that the email address has been typed in lowercase and if not, it converts it to lowercase.

Once the email address is ok it is stored in the customer file.
The flowchart for this could be as follows:


```
emailAddress = input
while not hasAtSign
    print error message
    emailAddress = input
endwhile
if emailAddress is not
lowercase then
    Convert to lowercase
endif
Write emailAddress to
customer file
```

The if statement to check whether the address is lowercase is not needed. Modify the algorithm so that it performs the same task without the if statement.

Write a pseudocode algorithm which inputs 10 numbers. Each time a number less than zero is input, the program displays which number it is, and its value. When all numbers have been input, display the average of all the negative numbers. Your algorithm should allow for the fact that there may be no negative numbers.
Sample output could be, for example:

```
Number 3 -8
Number 7 -20
Average of negative numbers = -14
```

- Auto-complete statements
- Colour-code key words such as if, then, else, comment statements, text within quotes etc.

The screenshot below shows a program that a user has entered, saved and attempted to run using the Run command at the top of the screen.

File Edit Format Run Options Window Help		
```#Program name: test scores.py #calculates average of test scores #Programmer: K Jones count = 0 total Score = 0 nunScores = 0 score = input("Enter first score: ") while score <> -1: numScores = numScores + 1 totalscore = totalScore + score score = input("Enter next score: ") endwhile print ("Average score: ", totalScore/nur```	SyntaxError   invalid syntax   OK	$\wedge$

In addition, an IDE will also provide:

- Pretty printing
- Break points to stop the program running at certain points
- Watch windows to monitor changes in variable values

What is wrong with the statement? How does the IDE help identify comments, keywords, text in quote marks? Can you spot any other syntax errors?

## Q7 List some other features of an IDE editor.

## Error diagnostics

Once a program has been entered it can be saved and translated to machine code by an interpreter or a compiler. The interpreter or compiler will run error diagnostics on each line that the programmer has entered, when they try to run the saved program. The IDE will then allow them to correct any syntax errors, save the program, translate to object code using the interpreter or compiler and run it again. When the syntax errors have all been corrected and the program is run again, the IDE may discover and report a runtime error.

```
line 10, in <module>
 numScores = numScores + 1
NameError: name 'numScores' is not defined
>>>
```

Can you identify the problem? What must be amended to correct the program? There are more errors in the program - if you are a Python programmer you can try running the program.

## Index

## Symbols

3D printing 75

A
abstraction 82
access levels 60
accumulator 4
actuators 7
adding in binary 20
algorithm 92
algorithmic thinking 84
amplitude 28
analogue 28
to-digital converter 28
AND gate 134
application layer 50
Arithmetic Logic Unit 3
arithmetic operations 4, 108
arithmetic shift 21
arrays 117
artificial intelligence 70
ASCII 24
assembly language 144
assignment statement 107
authentication 136

## B

backing store 46
bandwidth 48
binary 17
addition 20
shifts 21
to denary 18
to hexadecimal 22
logic 132
search 86
BIOS 9
bit 17
bitmap image 25,30
blagging 56
Bluetooth 37,43
Blu-ray 13
Boolean expressions 112
Boolean operators 108
bootstrap loader 9
boundary data 141
break points 147
brute force attack 56
bubble sort 87
buffering 63
byte 17
word 18

## C

cables 42
cache memory 3, 5, 6
camelCase 137
capacity 10
carbon footprint 70
case statement 96
casting 109
CD 13
central processing unit 2
character set 24
chr 111
ciphertext 44, 64
circuits 17
circuit switching 38
client-server network 45
clock speed 5
cloud storage 47
coaxial cable 42
colour depth 25, 26
command-line interface 62
comma-separated value 127
comments 138
communication 68
comparison operations 108
compiler 145
compression 29
lossless 31
lossy 30
software 65
computational thinking 82
CAM 71
Computer Misuse Act 199076
computer system 2
concatenation 109
constants 107
control unit 3, 4
conversion 18
Copyright Designs and
Patents Act 198877
cores 6
cost of storage 10
counting in binary 18
CPU 2, 5
cycle, Fetch-Execute 3

## D

data interception 57
Data Protection Act 201876
data types 106
decomposition 83
defensive design 135
defragmentation software 64
denary 18
to binary 19
to hexadecima 23
Denial of Service (DoS) attack 57
digital 28
disinformation 74
disk defragmenter 65
div 109
domain name system 36
registration 46
dots per inch 27
do...until 96, 116
driverless cars 70
dual-core 6
durability 10
DVD 13

## E

email server 45
embedded system 7
emojis 25
dmployment 68
encryption 44,60
asymmetric 45
symmetric 44
environmental issues 70
erroneous data 141
Ethernet 37, 42
extended ASCII 25

## F

fake news 74
fetch-execute cycle 3
fibre optic 42
file formats 30
file management 64
file server 45
files 124
File Transfer Protocol (FTP) 46, 49
firewall 59

Index continued

```
flowcharts 92, 97,99
format check 136
for...next 96,114
freeware 77
frequency 28
functions }12
```


## G

```
Gigabyte 17
graphical user interface 62
```


## H

hacking 56, 79
hard disk drive 8
hardware 2
healthcare 73
Hertz 5
hexadecimal 22
to binary 23
to denary 23
high-level languages 144
hosting 46
HTTP 49, 61
HTTPS 49, 61
hub 39

## I

identifier 106
if...then...else 95
images 25
indentation 138
input 84
device 2
statement 107
insertion sort 89
Integrated Development
Environment (IDE) 146
interference 42, 48
Internet 35
Internet layer 50
Internet Messaging Access
Protocol (IMAP) 49
interpreter 145
invalid data 141
IP address 35, 36, 50
IPv4 35
IPv6 35
ISP 46
iteration 96, 114

## K

key 44
kibibyte 17
kilobyte 17
L
latency 48
layers 50
legislation 76
length check 136
linear search 85
link layer 50
local area network (LAN) 37, 38
logical operations 4
logic
circuits 134
diagrams 132
errors 139
gates 133
loop 114
lossless compression 31, 65
lossy compression 30, 65
low-level languages 144

## M

MAC address 37, 42, 50
machine code 144
magnetic disks 10
main memory 3,62
maintainability 137
malware 54
man-in-the-middle attack 57
Mebibyte 17
Media Access Control 37
Megabyte 17
memory 2, 8
RAM 8
ROM 9
virtual 8
Memory Address Register 4
Memory Data Register 4
memory management 62
memory sticks 12
merge sort 91
mesh network 40
full 40
partial 40
metadata 27,78
$\bmod 109$
multi-tasking 62

## N

naming conventions 137
nested
if 95
loops 117
network hardware 41
networking 39
Network Interface Card (NIC) 41
network interface controller 37
network performance 48
network standard 48
nibble 17, 22
NOT gate 133

## 0

OCR Exam Reference Language
108, 110, 122
off-line storage 11
open source software 77
operating system 9, 59, 61
optical media 13
ord 111
OR gate 134
output 84
device 2
statement 107
overflow 20, 21

## P

packet switching 38
parallel processing 6
password protection 60
peer-to-peer 46
penetration testing 58
performance 5
peripheral
devices 38, 39
management 63
phishing 54
physical security 61
pixels 25
Pixels Per Inch (PPI) 25
plaintext 44, 64
portability 10
Post Office Protocol (POP) 49
presence check 136
pretty printing 147
privacy 76, 78
private key 45
procedures 120
processing 84
processor 2
Program Counter 4
programming languages 144
proprietary software 77
protocols 48
pseudocode 94
public key 45

## Q

quad－core 6

## R

radio waves 37,43
Random Access Memory 5， 8
random number generation 122
range check 136
reading from a file 127
reading records into an array 127
Read Only Memory 9
records 124
registers 3
ACC 4
MAR 4
MDR 4
PC 4
reliability 10
resolution 25， 26
ROM 7
router 41

## s

sample rate 28
sample resolution 28
satellites 37
searching 85
secondary storage 8,10
selection 95， 112
sensors 7
sequence 94， 111
server 45
shift 21
operations 4
overflow 21
shouldering 57
Simple Mail Transfer Protocol
（SMTP） 50
smart meters 79
social engineering 54
social networking 73
software 2
freeware 77
licences 77
open Source 77
proprietary 77
solid state drive 8， 11
sorting 87
sound 28
sample 28
special－purpose registers 4
speed of storage devices 10
SQL 57， 125
injection 57
stakeholder 73
standards 48
star network 39
storage 2，9， 10
cloud 47
stored program computer 3
string manipulation 110
structure diagram 83
sub－program 120， 137
subroutine 120， 123
switch 17，39， 41
switch statement 96
syntax errors 138
system software 145

## T

TCP／IP 49
TCP／IP model
layers 50
test data 141
testing 140
test plan 141
text files 126
topologies 39
mesh 39
star 39
trace table 98， 143
translators 145
transmission errors 48
transmission media 42
transport layer 50
Trojan 54
twisted pair copper cable 42
type check 136

## U

Unicode 25
units 17
URL 36， 37
user access levels 60
user interface 7， 61
user management 63
utility software 64

## V

validation 60， 136
variables 106， 122
vector graphic 25
verification 60， 136
virtual memory 8
virus 54
volatility 9
Von Neumann architecture 3
vulnerabilities 58

## W

waste 71
watch windows 147
web browser 35
web hosting 46
web server 45
while．．．endwhile 96， 115
wide area network 35， 37
WIMP 61
WinZip 65
wireless access point 43
word 18
worm 54
writing to a file 126

## OCR GCSE



Paper 2: Computational thinking, algorithms and programming


The content in each section of the textbook covers the same specification points as the corresponding downloadable teaching unit, e.g. Section 1 complements Unit 1.

## Exclusively for teachers

To accompany each section in the textbook, there is a series of teaching units for the new OCR J277 (9-1) GCSE. Unit 5 pictured below is free.


## OCR GCSE (9-1) J277 Computer Science



The aim of this book is to provide an accessible text for students, covering the OCR GCSE (9-1) Computer Science specification 3277. It will be invaluable both as a course text and in revision for students nearing the end of the course. It is divided into eight sections, each broken down into manageable chapters of roughly one lesson.

Sections 6 and 7 of the textbook cover algorithms and programming concepts with a theoretical approach. This provides students with experience of writing, tracing and debugging pseudocode solutions without the aid of a computer. These sections would complement practical programming experience.

Each chapter contains in-text questions and exercises, some new and some from past examination papers, which can be set as homework. Answers to all these are available to teachers only, in a free Teachers' Supplement which can be ordered from our website
www.pgonline.co.uk

## About the authors

Susan Robson worked for International Computers Ltd after graduating from Manchester University with a degree in Computer Science. She spent the following 12 years in technical pre-sales for ECI Telecom, before moving into teaching. As a Head of Computer Science, she gained years of experience teaching GCSE and A Level Computing and has written successful textbooks and teaching materials. She is currently teaching Computer Science at King Alfred's Academy in Wantage.

Pat Heathcote is a well-known and successful author of Computer Science textbooks. She has spent many years as a teacher of A Level Computing courses with significant examining experience. She has also worked as a programmer and systems analyst, and was Managing Director of PayneGallway Publishers until 2005.

## Cover picture:

## 'Love Song'

Acrylic on YUPO, 2012
© Sharon Cummings
www.sharoncummings.wordpress.com

This book has been endorsed by OCR.


